二次函数的图像和性质(二次函数的图像和性质公式)

本篇文章给大家谈谈二次函数的图像和性质,以及二次函数的图像和性质公式对应的知识点,希望对各位有所帮助。

本文目录一览:

二次函数的图像和性质

一般地,把形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数,下面总结了二次函数的图像和性质,供大家参考。

二次函数的定义和概念

一般地,把形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。

注意:“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别。

图像和性质

1.函数y=ax2(a不等于0)的图像和性质

用表里各组对应值作为点的坐标,进行描点,然后用光滑的曲线把它们顺次联结起来,就得到函数y=x2的图象这个图象叫做抛物线函数y=x2的图像,以后简称为抛物线y=x2这条抛物线是关于y轴成对称的我们把y轴叫做抛物线y=x2的对称轴对称轴和抛物线的焦点,叫做抛物线的顶点。

2.函数y=ax2+bx+c(a不等于0)的图像和性质

抛物线y=ax2+bx+c的顶点坐标是(-b/2a,4ac-b2/4a),对称轴方程是x=-b/2a,当a〉0时,抛物线的开口向上,并且向上无限延伸;当a〈0时,抛物线的开口向下,并且向下无限延伸

当a〉0时,二次函数y=ax2+bx+c在x〈-b/2a时是递减的,在x〉-b/2a时是递增的;在x=-b/2a处取得y最小=4ac-b2/4a;当a〈0时,二次函数y=ax2+bx+c在x〈-b/2a时是递减的。

二次函数的图像和性质是什么?

1、二次函数的性质:

特别地,二次函数(以下称函数)y=ax2+bx+c(a≠0),

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax2+bx+c=0(a≠0)

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

2、二次函数的图像:

知识要点

1、要理解函数的意义。

2、要记住函数的几个表达形式,注意区分

3、一般式,顶点式,交点式,等,区分对称轴,顶点,图像,y随着x的增大而减小(增大)(增减值)等的差异性。

4、联系实际对函数图像的理解。

5、计算时,看图像时切记取值范围。

6、随图像理解数字的变化而变化。

二次函数知识很容易与其他知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

二次函数的图像和性质是什么?

01

二次函数图象是抛物线,是轴对称性图形。y=ax的图象是最简单的二次图像,学习也较容易。顶点坐标为(0,0),即原点;对称轴为y轴,开口由a的正负决定。一般式:y=ax^2+bx+c(a≠0,a、b、c为常数)常数项c决定抛物线与y轴交点。

二次函数最高次必须为二次,二次函数图象是抛物线,是轴对称性图形。y=ax的图象是最简单的二次图像,学习也较容易。顶点坐标为(0,0),即原点;对称轴为y轴,开口由a的正负决定。一般式:y=ax^2+bx+c(a≠0,a、b、c为常数)常数项c决定抛物线与y轴交点。

二次函数简介

1、y=ax^2+bx+c与y=ax^2-bx+c两图像关于y轴对称。

2、y=ax^2+bx+c与y=-ax^2-bx-c两图像关于x轴对称。

3、y=ax^2+bx+c与y=-ax^2-bx+c-b2/2a关于顶点对称。

4、y=ax^2+bx+c与y=-ax^2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

顶点式

y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。

二次函数的性质和图像

1、二次函数的性质:

特别地,二次函数(以下称函数)y=ax2+bx+c(a≠0),

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax2+bx+c=0(a≠0)

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

2、二次函数的图像:

扩展资料

一般地,自变量x和因变量y之间存在如下关系

一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。

顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数)。

交点式(与x轴):y=a(x-x1)(x-x2)

(a≠0,a、且x1、x2为常数)x1、x2为二次函数与x轴的两交点。

等高式:y=a(x-x1)(x-x2)+m(a≠0,且过(x1、m)(x2、m)为常数)x1、x2为二次函数与直线y=m的两交点。

参考资料:百度百科-二次函数性质

上一篇:灯塔市有多少人口多少学校(灯塔市总人口)
下一篇:芬必得退烧吗(发热可以吃芬必得退烧吗)

为您推荐

发表评论